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ABSTRACT

The possible use of CsI to discriminate between high energy

cosmic ray electrons and interacting protons has been investigated.

The pulse-shape properties as a function of ionization density,

temperature, and spectral response are presented for thallium-

activated CsI and as a function of ionization density for sodium-

activated CsI. The results are based on previously published data

and on corroborative measurements from the present work. Experi-

mental results on the response of CsI to electron-induced electro-

magnetic cascades and to interacting hadrons are described.

Bibliographies of publications dealing with the properties of CsI

and with pulse-shape discrimination techniques are presented.

1. INTRODUCTION

The spectrum of high-energy cosmic-ray electrons has been measured

with a variety of detectors including spark chambers, emulsions,

Cerenkov radiators, scintillators, and magnetic spectrometers.l-5

There is wide disagreement among the reported results despite persistent

efforts to resolve the discrepancies. The greatest single uncertainty

in determining the spectrum at energies above 5 GeV is the separation

of electrons from the background of interacting protons. Those protons

which interact in the first few radiation lengths of a detector can

produce electromagnetic cascades which masquerade as electron-induced

showers. Both analytic and instrumental techniques have been employed

to distinguish between cosmic-ray electron and cosmic-ray proton primaries.
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The analytic techniques, while powerful, have not been sufficiently

definitive.6 The results reported here are from an investigation of

cesium iodide (CsI) for use as a totally active module in an ioniza-

tion spectrometer to observe high-energy cosmic-ray electrons, protons,

and heavier nuclei.

CsI is of particular interest because each signal from this

material contains two types of information about the nature of the

incident radiation. The intensity of the light emitted is a function

of the total energy deposited; and the time dependence of the light

emission, or so-called pulse shape, is a function of the ionization

density or spatial rate of energy deposition. In hadronic interactions

with cesium and iodine nuclei, massive low-velocity nuclear fragments

are formed. The rate of energy deposition is high for these fragments

and consequently high ionization densities are produced in the absorber

material. Electromagnetic cascades develop rapidly because of the

high atomic numbers of cesium iodine, but produce a lower ionization

density for comparable total energy deposition.

An idealized approach to the development of a CsI detector which

could identify interacting protons would be to determine both the

properties of CsI and the pertienet properties of hadronic interactions.

Then from such information the pulse shape of CsI could be predicted

and optimum electronic discrimination circuitry could be designed on

the basis of the anticipated response. A detector system could then

be performance tested with accelerator beams of particles with known

properties. While practical constraints limited the scope of the work
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presented here, significant data were obtained on the properties

of CsI and on its potential for use as a particle discriminator.

In the next section, the pulse-shape properties as a function

of ionization density, temperature, and spectral response are presented

for thallium-activated CsI and as a function of ionization density for

sodium-activated CsI. The results are based on previously published

data and on corroborative measurements from the present work. In the

third section the response of CsI to electron-induced electromagnetic

cascades and interacting hadrons is described. Bibliographies of

publications dealing with the properties of CsI and with pulse-shape

discrimination techniques are presented in Appendices A and B,

respectively.

2. PULSE SHAPE PROPERTIES OF CsI

The time dependence of the scintillation light output of activated

CsI can be well represented by a sum of exponential terms,

L(t) = Z Aiet/Ti. (1)

i

The number of terms required to represent the light output adequately,

as well as the parameters describing each term (Ai,Ti), are functions of

the type and concentration of the activator, the ionization density in

the CsI, the CsI temperature, and the wavelength of the scintillation

light. A large number of investigations of these various dependences

have been performed for thallium-activated CsI. A much more limited

amount of information is available concerning sodium-activated CsI.

A bibliography of the available literature on the properties of CsI

is given in Appendix A.
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The work presented here is concerned primarily with the ioniza-

tion density dependence for standard (approximately 0.1% molar)

concentrations of thallium and sodium activator. For these cases two

exponential terms adequately represent the scintillation light output.

2.1. Thallium-Activated CsI

2.1.1. Ionization-Density Dependence

For CsI(Tl), the basic data were obtained by Storey, Jack,

and Ward (SJW).7 SJW established that Al, T1, and A2 all depend on the

ionization density produced by the exciting radiation, whereas T
2

is in-

dependent of the ionization density. Their data are reproduced in table 1.

The following definitions apply:

a. p is the average ionization density; defined

as energy loss/pathlength in MeV/g/cm2. For stopping

particles this corresponds to kinetic energy/range.

Values in the upper row in table 1 are those given

by SJW. Values in the lower row are obtained from

current range-energy tables.8

b. c
t

is the integrated light output per unit energy

up to time t, i.e.

et f £tdt L(t)/E.

SJW give this quantity relative to the value of c
t

for

0.662-MeV photons. Rewriting eq. (1) in terms of light

per unit energy and indicating the dependence on p

explicitly:

L(t)/E = al(p) e t/Tl +a2 ) e-t / 2 , (2)



-5-

where a1 = A1/E and a2 = A2/E. Using eq. (2).

et = alIl [1 - e-t/T1] + a2 T2 [1 - e-t/T2].

c. R2 is the fraction of the total light which

is in the second component. Again using eq. (2),

R2 = a2 T2 /(al T1 + a22).

TABLE 1

Exciting 0.662-MeV 8.6-MeV 2.2-MeV 4.8-MeV
Radiation photons protons protons alphas

p 1.1 42.5 100 680

(MeV/g/cm2 ) 1.5 38 82 414

T
1
(sec) 0.70+0.025 0.60+0.02 0.52+0.01 0.425+0.01

T 2(Psec) 7.0+0.5 7.0+0.5 7.0+0.5 7.0+0.5

6E 1.0 1.18+0.05 1.04+0.05 0.48+0.03

E0. 5 /E4.0 0.385 0.476 0.476 0.588

E1.
5

1.0 1.56+0.8 1.49+.08 0.75+0.04

R2 0.50 0.35 0.30 0.25

No significant discrepancies with the SJW data have ever been

reported by the many investigators who have measured the same proper-

ties. Measurements from this work with cosmic-ray muons and 5.3-MeV

alpha particles are shown in fig. 1. While there were not sufficient

data to determine the long time constant with reasonable accuracy, the

short time constants were determined from these composite pulses after

subtracting out the best estimate of the contribution due to the long
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component. The values obtained for T1 are 0.78+0.08 Usec for muons

and 0.53+0.06 psec for alpha particles. The uncertainties represent

scatter in the experimental points and do not include systematic

effects from the measurement technique. In fig. 2, integral pulses

for 4.8-MeV alpha particles and cosmic-ray muons are shown as curves

from the present work together with the corresponding E0.5/4. 0 data

from SJW. The observed consistency is quite satisfactory.

Given the normalization E, = 1.0 for 0.662-MeV photons, the

data from SJW are sufficient to overdetermine the parameters in eq. (2)

for each of the four types of exciting radiation: that is, at four

values of p. Using the definitions above, the measured values of T1 and

T2 along with each measured value of o, o0.5/E4.
0
, or R2 yields a linear

relationship between a1 and a2 for each value of p. In fig. 3-a, -b,

-c, and -d the three relationships for each of the four values of p

are plotted.

Once values of a1 and a2 are determined for the case of 0.662-MeV

photons, an absolute value of E1.5 can be calculated for that case to

determine the absolute normalization for the other three cases. Then

£1.5 yields a linear relationship between a1 and a2 for each p, which

can be used to further examine the consistency of the data. This has

been done in fig. 3-b, -c, and -d, where one set of lines corresponds to

the Ec and E0.5/E4.0 solution in fig. 3-a, and the other set corresponds

to the Ecand R2 solution.

If eq. (1) adequately represents the actual light output and the

data were internally consistent, there would be a single common inter-
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section of the relationships between a1 and a2 in each case. Note,

however, that there is a lack of agreement in each case. It is

assumed here that the magnitude of the discrepancy between the various

solutions indicates the accuracy of the values of a1 and a2 so derived.

The values of al and a2, obtained from both solutions described above,

are plotted as functions of p in fig. 4. It can be seen that the

ambiguities are not bad, except for the 2.2-MeV proton case (p = 82).

In addition, T 1 is plotted as a function of p.

2.1.2. Temperature Dependence

Several sources of data on the temperature dependence of

the light output of CsI(O.1% molar T1) have been published.9- 1 1 Here

the results obtained by Robertson, Lynch, and Jack (RLJ) 9 are used because

the techniques and nomenclature employed are essentially the same as SJW

which was the basis for the analysis just presented. RLJ present data

on the temperature dependence of T1 , T2, c~, R1, and R2 for CsI(O.1%

molar T1) excited by 14-MeV protons (p=27.5) and 5.3-MeV alphas (p=396).

Their data are reproduced in table 2.

In the present work these data are analyzed in terms of eq. (1) to

determine the temperature dependence of a1 and a2 in the vicinity of

room temperature. In order to simplify the analysis, it is assumed that

the temperature dependence and the ionization-density dependence of all

parameters in eq. (1) are independent. RLJ obtained the following

results for the temperature dependence of the decay time constants:

T1 (p=27.5, T) e91 7 /T,

1068/T
T1(p=396, T) - e

720/T
T

2
(p=27.5, T) - e
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where T is the temperature in degrees Kelvin. No results for T
2

(p=396, T) are presented. Note that the temperature dependence of

T1 does have some ionization-density dependence. This small effect

is neglected and it is assumed that

1000/T
T1(T) C e

independent of p. In addition, it is assumed that

7 2 0/T
T2(T) Q e

independent of p.

With the temperature dependence of the time constants specified,

the data from RLJ on e , R1, and R2 (see table 2) are used to solve a

and a2 as functions of temperature since:

R1 = a Ti/(a
1
T+ a2T2 )

= aiTi/.i iX

and therefore,

a i = RiEc/Ti.

TABLE 2

Exciting T
Radiation (°K) (a) R

1
R
2

14-MeV 213 1.02 0.39 0.61
protons 293 1.25 0.55 0.45

373 0.69 0.93 0.07

5.3-MeV 233 0.519 1.00 0
alphas 273 0.526 0.86 0.14

293 0.511 0.75 0.25
353 0.368 1.00 0

(a) Relative values of c as a function of T are taken from Figure 6
of RLJ and are normalized to the absolute value at room temperature
obtained in Section 2.1.1.



-9-

The values of al1 and a2 obtained in this way were normalized to the

values of room temperature (T=300 K) obtained in Section 2.1.1. and are

plotted as a function of temperature in fig. 5. Here a1 appears to be

a linear function of temperature with a coefficient of about one percent

per degree. The behavior of a2 is apparently more complex; it appears to

fall both above and below temperatures of 3000K.

2.1.3. Spectral Dependence

Dependence of the spectral response of CsI(Tl) on the

ionization density has been reported by Hrehuss,12 while no dependence

was found in a similar study by Gwin and Murray.1 3 The existence of

two components, with very different time constants (approximately a

factor of 10), lead one to hope that they will contribute to different

portions of the light emission spectrum, as a function of the stimulating

radiation.l l Measurements such as those reported by Hrehuss and by Gwin

and Murray were performed also in the present work using alpha particles

from an Am source and gamma rays from a 57Co source. No variations,

greater than 15% in the integrated intensity, were observed over the

spectral range of 380 to 750 nm. This result is consistent with the

measurements of Gwin and Murray (reproduced in fig. 6) for 0.17% molar

thallium concentration. The reasons for the significant disagreement

with the results of Hrehuss are not well understood. Specific activator

concentration or the presence of additional impurities are possible

explanations.

The way in which the present measurements were performed, essentially

an averaging technique summing over many pulses, indicates only that

the time-integrated spectrum of light emission does not depend on
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ionization density. To determine if the time constants or the

relative amplitudes exhibit a spectral dependence, individual

pulse shapes were examined using a broad-band response photomultiplier

tube (RCA C31000A) and a series of color filters spanning the range

of the emission spectrum of CsI(Tl). To within the measurement errors,

corresponding to an uncertainty of +10% in the short time constant T1

there is no dependence of the pulse shape on the portion of the spectrum

observed for either alpha particle (high ionization density) or cosmic-

ray muon (low ionization density) irradiation. This observation is

consistent with the measurements reported by Sastry and Thosar.1 3

2.2. Sodium-Activated CsI

2.2.1. Surface Phenomenon

Initial attempts to measure the pulse-shape response of

CsI(Na) to irradiation by 4.8-MeV alpha particles yielded anomalous and

surprising results. The pulses were an order of magnitude smaller than

expected and of only 30-nsec duration, as shown in fig. 7. Because of

.the very short range of the alpha particles, it was speculated that

the observations were related to hydration of the sodium activator at

the scintillator surface. To test this hypothesis, the CsI(Na)

sample was chipped, and the alpha-particle source was placed on the

freshly exposed surface. The pulses observed for the next several hours

were characteristic of those expected in CsI(Na), but in four-days time

were predominantly of the anomolous variety first observed. In consul-

tation with personnel at Harshaw,1 5 it was concluded that the small,

fast pulses are the scintillation response of deactivated CsI, the result
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of NaOH formation in the scintillator surface. Although similar checks

were subsequently performed with samples of CsI(Tl), no such phenomenon

was ever observed.

2.2.2. Ionization-Density Dependence

For the pulse-shape response of CsI(Na) Keszthelyi-Landori

and Hrehuss1 6 report that the relative amplitudes of the two components,

but not the decay time constants, depned on ionization density. This

leads to very small pulse-shape differences for times less than 4 psec.

Measurements from this work with cosmic-ray muons and 4.8-MeV alpha

particles are shown in fig. 8. The observed pulse shapes are consistent

with the results of Keszthelyi-Landori and Hrehuss.

Apparently contradictory results of Winyard, Lutkin, and McBeth1 7

shows a large pulse-shape difference between 4.8-MeV alpha particles

and gamma rays in CsI(Na). Such a large difference could be due to the

anomolous surface behavior of CsI(Na) discussed previously.

Since the scintillation response of CsI(Na) exhibited less promise

for pulse-shape discrimination than the response of CsI(T1), subsequent

efforts to use CsI as a particle discriminator were limited to thallium-

activated material.

3. PULSE SHAPE DISCRIMINATION

The response of CsI(Tl) was investigated to determine if the time-

dependent pulse shape would adequately distinguish between interacting

hadrons and electron-induced electromagnetic cascades with comparable

total energy deposition.
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3.1. BNL Measurements

Measurements of the pulse-shape response of CsI(T1) to 14 GeV/c

negative pions were performed at Brookhaven National Laboratory in

August, 1972. Interacting pions were distinguished by pulse height.

In fig. 9, the time dependence of the response of CsI(T1) to a non-

interacting and to an interacting pion are shown. The pulse height

corresponding to the interacting pion is approximately 50 times that of

the noninteracting pion. The short time constants, T1 were determined

for these pulses in the same manner as the T1 for the pulses in fig. 1.

For the noninteracting pion, T1 = 0.78 +0.08 psec, the same as for cosmic

ray muons. For the interacting pion, T 1 = 0.71 +0.08 psec, less by about

10%, but the difference lies within the experimental resolution of the

measurements.

3.2. SLAC Measurements

Preliminary tests to evaluate the feasibility of distinguishing

between electrons and interacting pions by pulse shape discrimination

in CsI(Tl) were performed as part of an experiment at the Stanford

Linear Accelerator Center in April, 1972. The complete apparatus is

described previously.1 8 Of particular interest here is the front

portion of the ionization spectrometer which consisted of several 2-cm

thick CsI(Tl)* crystals. Each crystal is approximately one radiation

lengths thick. The assembly was exposed to electrons and pions at 5,

10, and 15 GeV/c. The scintillators were viewed by RCA 4523 or 4463 photo-

multiplier tubes (PMT) through acrylic lightguides. These PMT are identical

except for the spectral response of the photocathodes. The 4523 has a

*Purchased from Quartz et Silice, S. A., Paris, France.
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bialkali photocathode and the 4463 has an S-20 photocathode that has

more sensitivity towards the red end of the visible spectrum. The

current pulses from the PMT were simultaneously pulse-height and pulse-

shape analyzed. The pulse shape analysis was conventional and consisted

of measurement of the time to zero-crossing of the CsI pulses after a

single RC-integration followed by double RC-differentiation. The

measured distributions for 15-GeV/c electrons and interacting , 15-GeV/c

pions in the first three CsI crystals are presented in fig. 10-a, -b,

and -c. The histograms are one-dimensional projections that were obtained

by integration of the two-dimensional distributions (in pulse-height

and pulse-shape) over all pulse heights greater than 2.7 times single

minimum ionizing. Examination of the two-dimensional distributions

showed that the measured pulse shape parameter (time to zero-cross) is

independent of pulse height over the range of integration. For all three

crystals the pulse heights observed for interacting pions ranged up to

about 50 times minimum ionizaing. For electrons, they extended up to

about 15, 50, and 100 times minimum ionizing for crystals 1, 2, and 3,

respectively.

It is evident from the observed results that there is a small but

consistent difference between the electron and pion distributions. In

all three cyrstals the mean values of the time to zero-crossing for

electrons is about 30 nsec longer than that for pions. For the circuits

used in these measurements this difference corresponds to an effective,

single decay-time constant that is 10 percent longer for electrons than

*The counter in which the pion apparently first interacts is determined
by analysis of the measured pulse heights in the CsI and the following
tungsten modules.
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for interacting pions. Thus, we have a pulse shape difference that

is consistent with the BNL observations and that is at best marginally

useful for electron-hadron discrimination. A conclusive effort would

necessarily involve an investigation of interacting protons in CsI, as

well as interacting pions, which were employed for convenience in the

present work.
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FIGURE CAPTIONS

Figure 1. Time-dependent response of CsI(T1), viewed by an
RCA C31000A photomultiplier tube, to 5.3-MeV
alpha-particle and cosmic-ray muon radiation.

Figure 2. Integrated time-dependent response of CsI(Tl),
viewed by an RCA 8575 photomultiplier tube, to
4.8-MeV alpha-particle and cosmic-ray muon
radiation. The points are from the data presented
in Reference 7.

Figure 3-a, -b, -c, -d. Plots of the relationships between the
amplitudes a1 and a from the data in Reference 7 for
0.662-MeV photons, 9.6-MeV protons, 2.2-MeV protons,
and 4.8-MeV alpha particles, respectively.

Figure 4. The values of al, a2, and T1 obtained from fig. 3 as a
function of T.

Figure 5. The relative values of a1 and a2, obtained from the data
in Reference 9, as a function of temperature.

Figure 6. The spectral response of CsI(Tl) reproduced from ORNL 3354,
Reference 12.

Figure 7. Anomalous time-dependent response of CsI(Na), viewed by
an RCA 8575 photomultiplier tube, to 4.8-MeV alpha particles.

Figure 8. Time-dependent response of CsI(Na), used in conjunction with
an RCA 8575 photomultiplier tube, to 4.8-MeV alpha particle
and cosmic-ray muon irradiation.

Figure 9. Time-dependent response of CsI(Tl), used in conjunction with an
RCA 8575 photomultiplier tube, to interacting and non-interacting
14-GeV negative pions.

Figure 10-a, -b, -c. Time-dependent distributions of the response of
CsI(Tl) to electron-induced electromagnetic cascades and
interacting pions. The detector samples were arranged in
consecutive one-radiation-length-thick layers.
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